Ken Werner of Display Central has a post comparing the benefits of quantum dots to OLEDs in consumer TV applications.  Being the authority on quantum dot displays that we are here at Nanosys, Ken contacted us for an analysis.  Here is the explanation our Ph.Ds gave Ken:

OLEDs use organometalic compounds to emit light. They typically have a central metal atom surrounded by organic ligands. The decay issues are the same as with typical organic fluorophores.  In the excited state these molecules are very reactive to H2O and O2, as well as other small molecules that may be around. Once they react they become a different molecule and they will no longer fluoresce or phosphoresce and give off light. The more blue the light emission, the higher the energy of the excited state, and the more reactive the excited molecule will be. So your blue organic phosphores will have a much shorter lifetime than will red phosphores. The burn-in problem seen in OLED displays, that can be seen after just several weeks of operation with static content, is a manifestation of early blue degradation compared to green and red.

Conventional phosphores like YAG are doped materials. YAG used in white LEDs is actually cerium doped YAG. The cerium atom emits the yellow light and is surrounded by a vast amount of YAG. Quantum dots are similar in that a central core crystalline semiconductor material is used to confine the holes and electrons of the exciton (analogous to the cerium in YAG), and in our material this is surrounded by a thick shell of a different, lattice-matched semiconductor material (analogous to the YAG.) We call this a core-shell Quantum Dot structure. If the lifetime of our materials is less than that of conventional phosphors, it is typically because we have not made a perfectly lattice-matched shell, which may distort the core and cause defects at the core/shell interface that reduces the quantum yield.

The big difference here is that a perfectly made core-shell quantum dot does not have an intrinsic lifetime failure mechanism, whereas the organometallic compounds are intrinsically reactive to their environment, which makes them prone to shorter lifetimes especially at higher energies such as blue.

This is an important discussion, because TVs are a harsh environment for display components, running much hotter and brighter than tablets or mobile phones.  You can read the entire post here: http://www.display-central.com/flat-panel/is-quantum-dot-lifetime-good-enough-for-tv/

Comment