Viewing entries in
Color gamut standards

Can your TV accurately display your favorite NFL team's colors?

1 Comment

Can your TV accurately display your favorite NFL team's colors?

In honor of Super Bowl 50, featuring the Panthers vs the Broncos, I thought it would be fun to look back at a post I wrote in 2012 about NFL team colors. Turns out most TVs cannot accurately reproduce the Broncos uniforms...

1 Comment

Hollywood backs better pixels with new color standard


Hollywood backs better pixels with new color standard

At CES this year the key message from nearly all the top TV brands was that better pixels– with richer colors, brighter brights and deeper blacks– are about to take the UHD TV viewing experience to new heights. TV makers talked up new technologies like Quantum Dots and even began to talk seriously about finding new ways to get content that’s optimized for all these new features into consumers hands so they can experience all the benefits.

Chief among these initiatives is a new organization that display makers are calling the UHD Alliance.


Is the rec.2020 UHD color broadcast spec really practical?


Is the rec.2020 UHD color broadcast spec really practical?

I've often advocated on this blog for Pointer's Gamut as an important design goal for display makers but is it really practical today from a technology perspective? Pointer's Gamut covers a huge area and it's odd shape makes it awfully difficult to cover with just three primaries. Rec.2020, the leading Pointer's-covering color gamut broadcast standard and de facto standard for upcoming UHD broadcasts, demonstrates this perfectly. It uses very deep red and green primaries to ensure that all those purples and cyans can get squeezed it into the triangle.

rec.2020 needs a very saturated green and red primaries to cover 99.9% of Pointer's Gamut

It's certainly tough to make a display that can reproduce primary colors that are that saturated and it is especially hard to do so efficienctly. Until now the displays that have come closest rely on an esoteric and power-hungry laser backlight system that can only cover up to about 91% of rec.2020 spec. That is impressive given how ambitious rec.2020 is but a bulky $6,000 laser display doesn't exactly qualify as practical and it's certainly not a technology that we are likely to find in a tablet or smartphone anytime soon given it's low power efficiency.

That may be about to change.

My company, Nanosys, has been working on this problem and we now think it is practical to produce an LED LCD that covers over 97% of rec.2020 using Quantum Dot technology. The latest generation of our Quantum Dots emit light with a very narrow Full Width Half Max (FWHM) spec of below 30 nanometers for both red and green wavelengths. FWHM is pretty obscure spec to be sure but it means that the color is both very pure and accurate. That pin-point accuracy actually enabled us to demonstrate over 91% rec.2020 just by modifying an off-the-shelf, standard LCD TV set with a specially tuned sheet of Quantum Dot Enhancement Film (QDEF).

Nanosys demonstrates over 91% coverage of rec.2020 using Quantum Dots and a standard LCD TV color filter

Very impressive and even a bit better than the performance of that laser TV but still not quite all the way there. What else could be optimized to improve the system and get us closer?

Looking at the spectrum after the color filters revealed a significant amount of blue leaking through the green filter. This leakage was causing the blue point to shift away from the rec.2020 primary. By optimizing the system and selecting a different blue color filter material with a sharper cutoff, Nanosys engineers showed that it is possible to build a display that covers over 97% of the rec.2020 standard– with great power efficiency.

Quantum Dot enhanced displays are in mass production today, they are used in commonly available displays on the market today. Their high power efficiency also means they can be used in all kinds of devices from smartphones to TVs. So, for the first time, it is actually becoming practical to build displays that cover the massive rec.2020 standard and since rec.2020 is part of the UHD broadcast spec this great news for the next generation of 4K and 8K devices.



Pointer’s Gamut follow-up by TFT Central

Last summer I wrote a multi-part series here that looked at how much color gamut displays really need. In those articles I used the gamut of colors found in the natural world, as defined by Pointer, as a possible design goal for an ideal color display. Kid Jansen at TFT Central has followed-up on my piece with a much more detailed look at how several current color gamut standards and devices perform compared to Pointer’s gamut. He’s done some great analysis and it’s well worth reading, check it out here.



How much color do displays really need? Part 4: Content Delivery

In the previous post in this series, I made the case for displays with hybrid, custom color gamuts as a great way to deliver coverage of Pointer's gamut as well as the most important broadcast standards. We can build the hardware today to support these large color gamuts so its seems like a great solution but there is a catch: nobody is broadcasting or distributing these large color gamuts today. So, are we going to have to wait for broadcasters and content creators to slowly catchup, much like we did with HDTV?



How much color gamut do displays really need? Part 3: Existing color gamut standards

Last week I looked at the three "P's" of human color perception– physical, physiological and psychological– as a way to help define a color gamut for the ideal display. Based on real world examples from art and commerce, I concluded that the range of colors found in nature, as measured by Pointer, provided the best fit with our two design goals which were an accurate and exciting, immersive experience. This week, I'd like to get a little more practical and take a look at existing color gamut standards to see what we might realistically be able to achieve today.

What fits best?

Color gamut of 4,000 surface colors found in nature as measured by Pointer in 1980 against the color gamut of the iPhone 5.

The first thing you'll notice about Pointer's gamut (pictured above again) is that it's a pretty odd, squiggly shape. This means it is going to be difficult to cover efficiently with a three primary system that mixes just red, green and blue to create all the colors we see, like the LCD found in the iPhone. In order to cover Pointer's with just those three colors, we'd need to make them extremely saturated. There are proposed standards that take this  approach, such as rec.2020, but since they are not practical to implement today from a technology standpoint I've decided to ignore them for this discussion.

For the near future, we'll need to rely on just three colors to get the job done, so what can we do now? Let's look at two popular wide color gamut standards: Adobe 1998 and DCI-P3:

Current wide color gamut standards Adobe RGB 1998, commonly used by pro photographers and designers, and DCI-P3, used in digital cinema, compared to Pointer's gamut in CIE 1976

Let's start with Adobe 1998. Many people are familiar with this color gamut since it is found as an option on many consumer cameras and it is popular among creative professionals. It certainly covers a significantly wider range of colors than the HDTV broadcast standard with a very deep green point. The rich cyans that we talked about in the movie "The Ring" would look great in Adobe 1998. But, we’re not getting any more of those exciting reds and oranges. In fact, Adobe's red point is identical to the HDTV broadcast standard.

What about DCI-P3 then? Designed to match the color gamut of color film and used in cinemas all over the world, DCI-P3 has a very wide gamut. The reds are particularly deep and, of course, all of the colors from the movies we looked at are covered. Still, it's missing a lot of the deep greens found in Adobe 1998 and only just fits the green Pantone color of the year. So DCI-P3 is not quite perfect either.

What about a hybrid, custom gamut? 

What if we combined the green from Adobe with the red from DCI-P3 and their shared blue point? We’d end up with pretty good, high 90’s percentage coverage of Pointer’s gamut, coverage of all of the existing HDTV broadcast content, full coverage of cinema content from Hollywood and a superior ecommerce experience with most of the colors from the natural world covered.

Hybrid color gamut standard that combines the green point from Adobe 1998 with the deep red of DCI-P3

Looks pretty great and we can make displays now that cover this color gamut with today's technology. But how would it work on the content side? Would we need to get together and agree on this new standard and then wait for years while it is slowly adopted by content creators and display makers?

Next week

Next week we'll look at how content delivery might evolve to support gamuts like this without the need for major changes to broadcast standards.



How much color gamut do displays really need? Part 2: How we perceive color

Last week I set out to define the ultimate consumer display experience in terms of color performance. I laid out some potential color performance design goals for an ideal display, suggesting that such a display should be both accurate and capable of creating an exciting, immersive experience that jumps off the shelf at retail. Can we achieve both goals? To find out, let's start by looking at how we perceive color.

Color Perception

The color of objects that our eyes see in nature is determined by three things: physical, physiological and psychological:

The color of objects that our eyes see in nature is determined by three things: physical, physiological and psychological.

The physical component of our color perception is a constant based on the laws of nature. It is a combination of the quality of the illumination or light source, in this case meaning spectrum it contains, and the reflectance of the object. In the image above, the ball appears red to the eye because it is reflecting red light, while absorbing most the other colors from the light source.

The physiological part of our vision is also a relative constant that is based on the electrochemical processes of the eye. The back of the retina contains photoreceptor nerve cells which transform incoming light into electrical impulses. These electrical impulses are sent to the optic nerve of the eye and onto the brain, which processes and creates the image we see. And that’s where the psychological component comes in.

Let’s look at how each of these components might affect display color performance, starting with the physical, which ought to be something we can measure.


Fortunately, a guy named Pointer has done this for us. For his 1980 publication, Pointer measured over 4,000 samples and was able to define a color gamut of real surface colors, of objects found in nature. The result is commonly called “Pointer’s Gamut:"

Color gamut of 4,000 surface colors found in nature as measured by Pointer in 1980 against the color gamut of the iPhone 5.

This already seems like a great place to start. It immediately looks like a great fit our first ultimate color experience criteria which was accuracy. If we could accurately capture and reproduce all of the colors found in the natural world it would make for a much improved, more accurate ecommerce experience, for example.

But how important are those extra colors? Looking at Pointer’s gamut mapped against the color gamut of the latest iPhone in the chart above, you have to wonder if we really come across these deep cyans and reds in everyday life. Are they just infrequent, rare colors or something worth pursuing for our display?

Turns out we do. As an example, Pantone’s color of the year for 2012 was a deep emerald green that falls outside of both the iPhone's gamut and the HDTV broadcast standard. This is an important and popular color that appears a bit too yellowish on your computer monitor when you are shopping for the perfect tie on Amazon. So there are some really important colors outside of what the iPhone can display today.

But, what about our second criteria, the lifelike, exciting, immersive experience we want to give consumers? Is the gamut of the natural world enough?


If we look at the second component of the visual system, the physiological component, we’ll see that we can actually perceive a much wider range of colors. The cells in the back of retina can actually detect the entire range of the CIE diagram. That’s almost double the range of colors that Pointer found in nature:

Color gamut of the average human eye vs gamut of colors found in nature as measured by Pointer

This is starting to sound like a much more immersive experience. Maybe we ought to pursue the full color capability of the human eye just like the industry has done for high, "retina" resolutions.

It sounds great but it would be a tall order. It would take quite a lot of power, brightness and extra bit depth to even begin to think about covering a color space this large. There certainly would be a high price to pay in terms of design tradeoffs to get there. So are there any truly valuable colors contained in that extra space, similar to the Pantone color in Pointer’s gamut, that would make us want to go for it?


This is where the psychological component comes into play.

Seeing is not passive. Our brains add meaning to the light that our eyes detect based on context and experience and memory. We are continuously and actively re-visualizing the light that comes out of our retinas.

This may seem hard to believe but this fun demo created by neuroscientist Beau Lotto does a great job of showing just how much our brains actively interpret and change what we see.


The color of the chips has not changed in the video above, just our perception of the color. What’s happening here is our experience is telling us that the color chip in shadow must actually be a much brighter color than the chip under direct illumination, so our brain is just making the correction for us on the fly.

Artists absolutely play on this psychological element of our perception of color, sometimes using totally unrealistic or hyper real colors to make us feel or experience something new or help tell a story. In fact, one of the most influential art instructors of the 20th century, Josef Albers, once said that, "the purpose of art is not to represent nature but instead to re-present it."

Monet's The Poppy Field, near Argenteuil

So, whether it’s Monet using saturated and contrasting colors with equal luminance to trick our brains into seeing poppy flowers sway in an imaginary breeze in a 19th century painting or modern films which sometimes rely on the wider gamut capabilities of color film and digital cinema projection to create uniquely cinematic experiences for audiences.

Movies like “The Ring," for example, which used a deep cyan cast throughout much of the film to create tension and help tell a scary story. Or Michael Bay’s "Transformers" movies, which use deeply saturated oranges, reds and teal greens to create an exciting, eye-popping palette appropriate for a summer blockbuster sci-fi movie about giant robots:

Wide color gamut in movies

There’s certainly a place for wild, unexpected colors in art. But, as we go through some of these examples, I think we’ll actually find that there is a huge range of expression possible within the gamut of surface colors that Pointer measured. The full range of gamut detectable by the human eye, while exciting to think about, is not really necessary to deliver both accurate and pleasing (engaging) color to our visual system.

So where does that leave us?

In my next post I'll look at existing wide color gamut standards and content delivery mechanisms to see both what we can do today and what's next for wide color gamut displays.


1 Comment

DisplayWeek 2013: Color is back

Just back from a great DisplayWeek in Vancouver. Finally had a chance to recover, go through my notes and process everything I saw at the show. Most of the big story lines will be pretty familiar to anyone who followed last years show: TV's are still getting bigger, OLED TV is still right around the corner, 4K is starting to ship and mobile displays are getting both sharper and more efficient. DisplayWeek wasn't all old news though. In fact, just like CES, this year everyone seemed to be talking about color performance. At the annual Display Industry Awards, honors in several categories went to wide gamut display technologies including the Best In Show and Component of the Year awards. And, on the show floor, major manufacturers like 3M, Samsung and LG dedicated significant booth space to wide color gamut or color management technologies.

3M's Quantum Dot Enhancement Film demo at DisplayWeek 2013. Bottom display is using quantum dots to achieve a wide color gamut.

3M demoed several wide color gamut LCDs  based on the Quantum Dot Enhancement Film (QDEF) technology that they are partnering with Nanosys to manufacture. Ranging from smartphone all the way up to 55" TVs in size, these devices were all showing a wider color gamut than OLED with an especially deep red. This seems like a lot of color but 3M says that in developing their Perceptual Quality Metric (PQM), a new analysis tool aimed at helping display makers model how different performance characteristics will affect end user experience, they found that color saturation positively affected the perception of quality.

In Samsung's neighboring booth, I found a series of comparison demos designed to show that wide color gamut displays can be both accurate and pleasing to the eye. Each demo featured a camera feeding a live image of several colored objects to both standard and wide color gamut displays. In each case the wide gamut display was able to more accurately recreate the color of the objects in front of the camera. They also showed off the new color management capability of their flagship Galaxy S4 smartphone that allows the device to accurately display rec.709 content without oversaturation- something the previous generation S3 struggled with.

Samsung demonstrating the value of wide gamut displays by showing some common colors that fall outside the rec.709 broadcast gamut standard in a series of demos at DisplayWeek 2013

Finally, at LG's booth, we saw a new LCD color filter design that allows them to cover the Adobe RGB color gamut used by photographers and print professionals.

With all of this buzz, it looks like we'll start to see wide color gamut displays start to move into the mainstream in ever larger screen sizes over the next half of this year and into 2014.

1 Comment

Apple CEO Tim Cook talks color quality at Goldman Sachs conference


Apple CEO Tim Cook talks color quality at Goldman Sachs conference

Apple CEO Tim Cook
Apple CEO Tim Cook

Apple CEO Tim Cook spoke at Goldman Sachs' Technology and Internet Conference yesterday. He touched on a wide range of topics from what Apple plans to do with its cash horde to the state of its retail operation. When it came to a question about making lower cost products, Tim used display quality to help make a point about creating great user experiences:

The truth is, customers want a great experience and they want quality and they want that a-ha moment each time that they use the product, and that's rarely a function of any of those things.

If you look at displays, some people are focused on size. There's a few other things about the display that are important. Some people use displays, like OLED displays, the color saturation is awful. And so if you ever buy anything online and you want to really know what the color is as many people do, you should really think twice before you depend on the color of the OLED display. The Retina display is twice as bright as an OLED display. I only bring these points up to say there are many attributes to the display, and what Apple does is sweat every detail.

He makes some fair points here. If a display is not bright enough to view in all conditions, not efficient enough to get you through a whole day or accurate enough to display your favorite content, the experience of the whole device suffers. Choosing the right display technology is certainly a critical part of the design process.

OLED technology's power consumption and saturation issues have been well established already. What I find most interesting in Tim's comments is the idea that high color saturation is intrinsically a bad experience. It certainly has been that way so far but the difference between a great color experience and the gaudy oversaturation of today's OLEDs is in exactly the kind of implementation details he's describing above.

OLED and emerging LCD technologies, like quantum dot displays, can actually show a much wider range of colorsthan today's devices– over 40% more of the color that our eyes can detect. This means that, when paired with the right content, high saturation displays can more accurately reflect the world we see around us resulting in a more lifelike, immersive experience.

But how do we get wide color gamut content into consumers hands?

It's a lot like the chicken and egg/content and technology dilemma facing 4K TV makers with two key differences- wide color gamut can be delivered with no change in file size and there's plenty content out there already. As an example, movies have been shot for decades on media, both film and digital, that has a much wider color gamut than your TV does today. Much in the same way that 4K TV's can upscale HD video, it's also relatively easy to manage the color on a device to make it backwards compatible with today's content.

OLED implementers have thus far been content to take advantage of the extra pop that added color saturation provides when comparing devices on a store shelf. They've left a tremendous amount of overall ecosystem value on the table. It's possible to deliver video in cinema-level color quality to mobile devices, to offer developers the tools to take full advantage of a wider color palette and to implement accurate color management for existing content. Wide color gamut is ready now, it's just waiting for the right device maker to come along and put all these pieces together to perfect the experience.



ITU agrees on HEVC h.265 codec

h-265-logo,Q-D-349573-3The ITU announced today that it's members have agreed upon a new high efficiency video codec. Dubbed HEVC H.265, the new format is designed to improve on and ultimately replace the current king of all codecs, H.264/MPEG-4 AVC which covers 80% of internet video today. So far, a lot of attention has been given to the codec's ability to deliver the same quality video as 264 with only half the bandwidth. That kind of efficiency improvement is a big deal– it could reduce strain on networks and bring high-resolution 4K content delivery over the internet closer to reality.

h265 vs h264 quality comparisonThere are also some important changes for color in the new spec. Recent drafts by the ITU's Joint Collaborative Team on Video Coding (JCT-VC) have added support for wider color gamuts like Adobe RGB 1998 and 12-bit video. This paves the way for fantastic looking color as wide gamut-capable hardware starts to become more widely available.



Color at CES 2013

I'm just wrapping up my visit to CES and it's been interesting year for display technologies. Amid all the noise about 4K, OLED and 4K-OLED, color performance seems to have quietly worked its way into the conversation. I can't recall ever having so many relatively technical conversations about color with booth reps from major consumer electronics manufacturers at a CES. It nearly started feeling like a visit to DisplayWeek, that is until I ran into some of the weird, only-at-CES iPhone cases... Color Your World CES 2013

I bet we'll see more color talk next year, especially as 4K content delivery mechanisms and standards begin to mature. In the meantime, these are some of the color-related display stories that caught my eye this week:

Wide gamut content delivery

Sony's 4K content delivery plans have been one of the most talked about topics here at CES. Less mentioned was Sony's inclusion of wider color gamut in their standard. Sony reps that I talked to said that both the 1080P Blu-ray disc-based "mastered in 4K" and pure 4K delivery methods would include a wider color gamut. They were not ready to release specifics on gamut size or whether it would meet existing standards like DCI-P3. Still, bringing "expanded color showcasing more of the wide range of rich color contained in the original source" is a move in the right direction for wide gamut.

Color accuracy

Technicolor showed off a color certification program that they hope will incentivize display makers to improve the color accuracy of their panels. Displays that meet or exceed Technicolor's color specs will get a badge and a copy of partner Portrait Display's Chroma Tune software, which dynamically controls color gamut to match the application you are using. This means if you open Photoshop on a device with an Adobe RGB 1998 capable display, you'll get the full, wide gamut. But, if you switch over to watch a YouTube video in your browser, the software will limit the display to rec.709 for the most accurate experience. The advantage was well demonstrated by their e-commerce demo, where a pair of shoes were more accurately depicted on a certified display:

Technicolor's ecommerce Color Certification demo at CES 2013. The color certified laptop in the middle of the frame more accurately shows the color of the shoes.

Like Sony's upscaling effort, this kind of technology could help drive wide color gamut adoption by making today's content compatible with newer displays.

Huge tablets

Panasonic 4K Tablet with sRGB color gamut at CES 2013

Several companies at the show introduced devices in a new class- the 20-plus inch tablet. While there were a lot of hokey multi touch gaming demos (are you really going to play poker with 4 smartphones and a 27" screen instead of a deck of cards?), the content creation stuff Panasonic showed actually made me think the new form factor shows real promise as a professional tool.

Their tablet, which measures 20 inches on the diagonal, features a 4K IPS panel that covers 100% of the sRGB color gamut standard. Having such a a large canvas with high resolution, accurate color and multi-touch could be great for creative pros like photographers and architects.


Color of the year for 2013 falls outside sRGB gamut


Color of the year for 2013 falls outside sRGB gamut

Pantone recently announced their color of the year for 2013, a deep shade of emerald green that they call “Emerald 17-5641.” It’s a great color but there’s a catch- most displays cannot accurately show it.



So you bought a 4K TV, now where is the 4K content?

Content is king. One of the biggest challenges for emerging display technology is content availability. Whether it’s 3D, 4K or wide color gamut, these new features simply aren’t worth much without access lots of great, optimized content. As new 4K TV’s begin hitting store shelves this year, they are entering a content vacuum.

Standards bodies like the Consumer Electronics Association (CEA) and International Telecommunication Union (ITU) are still working out the precise definition of marketing terms like Ultra High Definition TV (UHDTV). Proposed standards could include support for eight million pixel resolution, extremely wide color gamut and 3D content. But, today, there is almost no content out there that takes full advantage of all of the exciting capabilities of the new sets.

And, unlike the transition to HDTV, there’s no government-mandated switch on the horizon to force broadcasters to get on board.

CIE 1931 rec.2020 vs rec.709

At least one set-maker is taking it upon themselves to solve this problem by delivering both the 4K content and hardware. Sony announced last week that it will loan a 4K Ultra HD video player loaded with UHD content to buyers of their new 84” UHD television. The selection of 4K content on this player is fairly limited for now, but as more titles are released, this approach could help drive adoption of high resolution and wide color gamut formats.  I wouldn’t be surprised if other set makers started following suit, though Sony does have an inherent advantage, owning a movie studio.



Shopping for a tablet this holiday season? Don’t forget to look at color performance

If you have been researching the perfect tablet to give to a loved one this holiday season, you’ve probably read a lot about display quality. Tablet display size, resolution and aspect ratio have been discussed at length this year, which is really no surprise, since the quality of the display has the biggest impact on how we enjoy content on these devices. What is surprising though is that color performance, one of the biggest differentiators among the current crop of tablet displays, has been largely glossed over by the mainstream gadget press.

The Verge’s tablet comparison tool, for example, gives great info about pixel density, aspect ratio and touch capabilities, but color performance is nowhere to be found:

Color is being ignored in spite of the fact that there are tremendous differences in the color performance of each of these devices that directly impact the consumer experience on each.

So why are we overlooking a feature that, unlike many of the features we focus on these days, presents a real difference between devices?  I see a couple reasons. First and foremost, thanks to Apple’s marketing of the Retina display, pixels-per-inch has become the spec du jour in today’s device wars.  Device makers are focusing their marketing efforts on pixel count above anything else.

Aside from current trends, I believe there’s also a macro reason to why color has been left out: color performance is just hard to compare. There is no universally accepted spec that can sum up color performance across devices.

Take the three popular tablets above. We could add a “color gamut” row to the chart, measuring against sRGB, which would look like this:

From this information, a shopper could gather that the Nexus 7 and Kindle Fire HD have about the same color performance and both outdo the iPad mini. That is an accurate assessment, but it’s not the whole story. If we look at those color gamuts plotted in CIE 1976, some important nuances become apparent.

By measuring the percent of sRGB, we know how much of that overall color standard the device can reproduce.  However, displays usually produce more of one color than another and that information is completely lost with this measurement.  The Nexus and Kindle have significantly deeper blue than the iPad mini, most likely due to a narrower blue color filter like the one found in the third and fourth generation iPad. This accounts for most of the difference in sRGB coverage between the iPad mini and the other two devices.

Take a look at the other two primaries and it gets more interesting. In the image on the right that zooms in on green, we see that the Kindle Fire has the deepest green of the three, followed by the iPad mini and the Nexus.

For reds, though, it’s different again, with the Nexus having the deepest reds followed by Kindle and then iPad.

If we ever want to make color performance a real differentiator in consumer choice, we need to develop a new universal standard to easily compare color across devices, taking into account all of these nuances.

Color is a complex story to tell, but small differences in color performance are just as noticeable to consumers as pixel density in everyday use. Next time you find yourself at a retailer who carries all three devices, try googling test patterns and look at the differences. You might be surprised.



Gizmodo: Tech’s New Most Meaningless Spec: PPI

Adrian Covert of Gizmodo has an interesting piece looking at the gadget industry’s recent obsession with high PPI displays. With devices like the HTC DNA pushing resolution well past 300 PPI, electronics makers may be turning PPI into the next overhyped marketing stat, just like contrast ratio is for the TV industry and megapixel is for the digital camera.

Adrian gets to the heart of the problem:

There are plenty of ways to make a better-looking display. But we've reached the point in the pixel density wars where higher figures have stopped automatically equating to improved performance for users. Any grandstanding about pixel density, from here on out, now is mostly just marketing fluff.

We tend to agree, and color performance is probably the display feature with the most room to improve. The best LCD smartphones on the shelves right now can show you more pixels than your eye can detect, but can only show you about a third of the colors you can see. If electronics makers want impactful feature improvements for new devices, color performance is where it’s at.



The case for wide-gamut in your photography workflow, even if you are exporting to sRGB

[youtube] This is a great, exhaustive tutorial on managing color gamut for photographers by color expert Andrew Rodney. He does a great job making the case for working in wide gamut color spaces like Pro Photo, especially when capturing in RAW. Using smaller gamuts like sRGB throws away useful color data that printers and more and more displays can recreate.



Color Space Confusion

For many who are new to the world of display measurement, the prevalence of two distinct, but often-interchanged color spaces can be a source of confusion. Since my recent post about the color performance of Apple’s new iPad, a number of people have asked about this topic, so I thought it would be worth a closer look. In the world of displays and color images, there exists a variety of separate standards for mapping color, CIE 1931 and CIE 1976 being the most popular among them. Despite its age, CIE 1931, named for the year of its adoption, remains a well-worn and familiar shorthand throughout the display industry. As a marketer of high color gamut display components, I can tell you from firsthand experience that CIE 1931 is the primary language of our customers. When a customer tells me that their current display “can do 72% of NTSC,” they implicitly mean 72% of NTSC 1953 color gamut as mapped against CIE 1931.

However, from the SID International Committee for Display Metrology’s (ICDM) recent, authoritative Display Measurement Standard:

“…we strongly encourage people to abandon the use of the 1931 CIE color diagram for determining the color gamut… The 1976 CIE (u',v') color diagram should be used instead. Unfortunately, many continue to use the (x,y) chromaticity values and the 1931 diagram for gamut areas.”

So why are there two standards, and why are we trying to declare one of them obsolete? Let me explain.

What is a color space?

First, a little background on color spaces and how they work.

While there are a number of different types of color spaces, we are specifically interested in chromaticity diagrams, which only measure color quality, independent of other factors like luminance. A color space is a uniform representation of visible light. It maps the all of the colors visible to the human eye onto an x-y grid and assigns them measureable values. This allows us to make uniform measurements and comparisons between colors, and offers certainty that images look the same from display to display when used to create color gamut standards.

In 1931, the Commission internationale de l’éclairage or CIE (International Commission on Illumination in English) defined the most commonly used color space. Here’s a look at the anatomy of the CIE 1931 color space:

What makes a good color space?

An effective color space should map with reasonable accuracy and consistancy to the human perception of color. Content creators want to be sure that the color they see on their display is the same color you see on your display.

This is where the CIE 1931 standard falls apart. Based on the work of David MacAdam in the 1940’s, we learn that the variance in percieved color, when mapped in the CIE 1931 color space, is not linear from color to color. In other words, if you show a group of people the same green, then map what they see against the CIE 1931 color space, they will report seeing a wide decprepancy of different hues of green. However, if you show the same group a blue image, there will be much more agreement on what color blue they are seeing.  This uneveness creates problems when trying to make uniform measurements with CIE 1931.

The result of MacAdam’s work is visualized by the MacAdam Elipses.  Each elipse represents the range of colors respondents reported seeing when shown a single color, which was the dot in the center of each elipse:

A better standard

It was not until 1976 that the CIE was able to settle on a significantly more linear color space. If we reproduce MacAdam’s work using the new standard, variations in percieve color are minimalized and the MacAdam’s Elipses mapped on a 1976 CIE diagram appear much more evenly sized and circular, as opposed to oblong. This makes color comparisons using CIE 1976 significantly more meaningful.

The difference of the CIE 1976 color space, particularly in blue and green, is immediately apparent. As an example, lets look at the color gamut measurements of the iPad 2 and new iPad we used in an earlier article. Both charts do a reasonably good job of conveying the new iPad’s increased gamut coverage at all three primaries. But, the 1976 chart captures the dramatic perceptual difference in blue (from aqua to deep blue) that you actually see when looking at the displays side by side:

The increased gamut of the new iPad is worth testing. Next time you find yourself in an Apple store, grab an iPad 2, hold it alongside a new iPad, Google up a color bar image and see the difference for yourself.

So, why do we still use CIE 1931 at all?  The only real answer is that old habits die hard.  The industry has relied on CIE 1931 since its inception, and change is coming slowly.

Fortunately, CIE 1931’s grip is loosening over time. The ICDM’s new measurement standard should eventually force all remaining stragglers to switch over to the more accurate 1976 standard. Until then, you can familiarize yourself with a decent color space conversion calculator, such as the handy converter we built just for this purpose: